'Living stones' reveal alternative petal identity programs within the core eudicots.
نویسندگان
چکیده
Petals, defined as the showy laminar floral organs in the second floral whorl, have been shown to be under similar genetic control in distantly related core eudicot model organisms. On the basis of these findings, it is commonly assumed that the petal identity program regulated by B-class MADS-box gene homologs is invariant across the core eudicot clade. However, the core eudicots, which comprise >70% of angiosperm species, exhibit numerous instances of petal and sepal loss, transference of petal function between floral whorls, and recurrent petal evolution. In the face of these complex patterns of perianth evolution, the concept of a core eudicot petal identity program has not been tested. We therefore examined the petal identity program in the Caryophyllales, a core eudicot clade in which perianth differentiation into sepals and petals has evolved multiple times. Specifically, we analyzed the expression patterns of B- and C-class MADS-box homologs for evidence of a conserved petal identity program between sepal-derived and stamen-derived petaloid organs in the 'living stone' family Aizoaceae. We found that neither sepal-derived nor stamen-derived petaloid organs exhibit gene expression patterns consistent with the core eudicot petal identity program. B-class gene homologs are not expressed during the development of sepal-derived petals and are not implicated in petal identity in stamen-derived petals, as their transient expression coincides with early expression of the C-class homolog. We therefore provide evidence for petal development that is independent of B-class genes and suggest that different genetic control of petal identity has evolved within this lineage of core eudicots. These findings call for a more comprehensive understanding of perianth variation and its genetic causes within the core eudicots--an endeavor that will have broader implications for the interpretation of perianth evolution across angiosperms.
منابع مشابه
Are petals sterile stamens or bracts? The origin and evolution of petals in the core eudicots.
BACKGROUND The aim of this paper is to discuss the controversial origins of petals from tepals or stamens and the links between the morphological expression of petals and floral organ identity genes in the core eudicots. SCOPE I challenge the widely held classical view that petals are morphologically derived from stamens in the core eudicots, and sepals from tepals or bracts. Morphological da...
متن کاملMolecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages.
The specification of floral organ identity in the higher dicots depends on the function of a limited set of homeotic genes, many of them members of the MADS-box gene family. Two such genes, APETALA3 (AP3) and PISTILLATA (PI), are required for petal and stamen identity in Arabidopsis; their orthologs in Antirrhinum exhibit similar functions. To understand how changes in these genes may have infl...
متن کاملPhylogenetic analysis of the "ECE" (CYC/TB1) clade reveals duplications predating the core eudicots.
Flower symmetry is of special interest in understanding angiosperm evolution and ecology. Evidence from the Antirrhineae (snapdragon and relatives) indicates that several TCP gene-family transcription factors, especially CYCLOIDEA (CYC) and DICHOTOMA (DICH), play a role in specifying dorsal identity in the corolla and androecium of monosymmetric (bilateral) flowers. Studies of rosid and asterid...
متن کاملAnalysis of the Petunia TM6 MADS box gene reveals functional divergence within the DEF/AP3 lineage.
Antirrhinum majus DEFICIENS (DEF) and Arabidopsis thaliana APETALA3 (AP3) MADS box proteins are required to specify petal and stamen identity. Sampling of DEF/AP3 homologs revealed two types of DEF/AP3 proteins, euAP3 and TOMATO MADS BOX GENE6 (TM6), within core eudicots, and we show functional divergence in Petunia hybrida euAP3 and TM6 proteins. Petunia DEF (also known as GREEN PETALS [GP]) i...
متن کاملDuplications and expression of DIVARICATA-like genes in dipsacales.
The genetics underlying flower symmetry shifts between radial and bilateral symmetry has been intensively studied in the model Antirrhinum majus. Understanding the conservation or diversification of this genetic pathway in other plants is of special interest in understanding angiosperm evolution and ecology. Evidence from Antirrhinum indicates that TCP and MYB transcription factors, especially ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant journal : for cell and molecular biology
دوره 69 2 شماره
صفحات -
تاریخ انتشار 2012